

The Carbon Footprint of Carbon Dioxide

Robert E. James III, Ph.D.

National Energy Technology Laboratory
Strategic Energy Analysis & Planning Division
October 1, 2013

Agenda

Background

Technology Descriptions

Unit Processes

Key Parameters

Co-product Management

Cradle-to-Gate Results

Sensitivity and Uncertainty

Summary

Background – Why are we studying this? Enhanced Oil Recovery

- Enables additional recovery of crude
- CO₂ injection is alternated with injection of brine
- EOR produces additional crude; however,
 EOR also sequesters CO₂
- Increasing EOR production increases the demand for CO₂
- This presentation focuses on the options for acquiring CO₂ for EOR, not EOR itself (see other NETL talks)

- EOR
 - Projected annual growth rate of 3.5% through 2040
 - o 10.8% of U.S. production by 2040 (compared to 5.1 % in 2010)

Technology Descriptions

CO₂ from Natural Dome

- Reservoirs of high purity CO₂
- Existing CO₂ domes: McElmo, Sheep Mountain, Jackson, and Bravo domes in Western U.S.
- Recovery of CO₂ requires construction of a well with a carbon steel casing
- Contains water and must be dehydrated prior to compression and pipeline transport

CO₂ from Natural Gas (NG) Processing

- Unprocessed NG contains acid gas, including variable concentrations of CO₂
- NG processing increases the heating value and reduces the acid gas composition of natural gas
- Most NG processing plants vent NG, but at some scales it may be feasible to capture CO₂

• CO₂ from Ammonia Production

- CO₂ is a co-product of synthetic ammonia
- Ammonia plants use natural gas as a fuel and feedstock
- An ammonia plant has two key sources of CO₂
 - Emissions from reforming
 - Emissions from *stripping*.
- CO $_2$ from reforming cannot be easily captured, but acid gas from stripping is 99 percent CO $_2$ and can be easily captured.

• CO₂ from Captured Electricity Production

 CO₂ is a co-product of fossil power generation; consider Supercritical Pulverized Coal (SCPC), and Natural Gas Combined Cycle (NGCC) power plants

Unit Processes for CO₂ from Natural Dome

CO₂ well construction

- Based on environmental impact statement for Kinder Morgan CO₂ extraction sites in Western U.S.
- Key parameters include well depth, well life, and well production rate
- Inputs include construction materials (steel and concrete), diesel used by drilling rig, and water used for drilling mud

CO₂ well operation accounts for fugitive CO₂ emissions

- Valve leakage and other fugitive CO₂ emissions are accounted for by single emission factor, adapted from NETL's existing unit processes for NG extraction
- Existing NG emission factor was adapted according to molecular weights of methane vs. CO₂

CO₂ dehydration

- Reboiler heat and pump power provided by grid electricity instead of NG

Key Parameters for CO₂ from Natural Domes

Parameter Name	Low	Expected	High	Units	Description		
CO ₂ Well Construction							
Drill speed	1.42E+01	1.78E+01	2.13E+01	m/h	Drilling rate		
Drill depth	1.00E+03	2.08E+03	2.50E+03	m	Well depth		
Drill power		4.47E-01		MW	Power of drilling equipment in brake specific power		
Diesel rate	2.21E+02			kg/MWh	Use rate of diesel; kg of diesel combusted per MWh of brake drilling energy		
Total casing mass	1.03E+05			kg/well	Total mass of carbon steel well casing		
Total concrete mass	1.11E+05			kg/well	Total mass of concrete well casing		
Groundwater proportion	5.00E-01			dimensionless	Fraction of groundwater used during drilling		
Surface water proportion	5.00E-01			dimensionless	Fraction of surface water used during drilling		
Fresh water mass	6.65E+05			kg/well	Fresh water demand for drilling		
Brine water mass	3.11E+05			kg/well	Brine water demand for drilling		
CO ₂ Well Operation							
Fugitive CO₂	4.64E-06			kg/kg	Fugitive loss of CO ₂ from valves, per kg of CO ₂ extracted		
Well life	20	25	30	years	Production life of a CO ₂ well, used to calculate share of well construction per unit of CO ₂ dehydrated		
CO₂ production rate	5.66E+05	8.09E+05	1.05E+06	kg/well-day	Production rate of a CO ₂ well, used to calculate share of well construction per unit of CO ₂ dehydrated		
Well success rate	0.65	0.70	0.85	dimensionless	Fraction of wells drilled that have economically viable production rates, used to calculate share of well construction per unit of CO2 dehydrated		
CO ₂ Dehydration							
CO ₂ loss	1.15E-04			kg/kg CO₂	CO ₂ emissions released to air during glycol regeneration, in terms of CO ₂ treated		
Dehydration Power	1.93E-04			kWh/kg CO₂	Electricity requirements for pumping and heating glycol used for dehydration, in terms of CO₂ treated		

- Well construction and operation parameters based on discussions with representatives of Kinder Morgan and comparisons between NG and CO₂ well practices
- Dehydration parameters based on comparisons between NG and natural CO₂ compositions

Unit Process for CO₂ from NG Processing

Based on acid gas removal (from NETL's NG model)

- Unlike existing NG model, CO₂ is captured instead of vented
- Processed NG is sent to additional processing steps that are not necessary for CO₂

Parameters are used to account for variable CO₂ concentrations

- Production gas contains 1.5 to 80+ percent (by mass) CO₂
- There are four existing sites that capture CO₂ from NG processing for purposes of EOR
- This model uses the composition of gas from those facilities (76.9 to 81.1 percent) as the basis of the analysis, since low compositions cannot be economically captured
- Reference flow of unit process is 1 kg of captured CO₂, so energy and material flows scale according to incoming CO₂ concentration

Key Parameters for CO₂ from NG Processing

Parameter Name	Low	Expected	High	Units	Description	
Solvent makeup rate	9.98E-05	1.00E-04	1.01E-04	kg/kg CO₂ captured	Makeup rate of amine solvent for CO₂ recovery, in kg of solvent per kg of CO₂ captured	
NG fuel	6.33E-02	6.64E-02	6.95E-02	kg/kg CO₂ captured	Combusted NG input for steam generation per unit of CO₂ captured	
Water input	1.48E-02	1.49E-02	1.50E-02	kg/kg CO₂ captured	Water withdrawal per unit of CO₂ captured	
Surface water share	0.00E+00	5.00E-01	1.00E+00	dimensionless	Share of water withdrawn from surface water sources	
CO ₂ input composition	0.8113	0.7882	0.7690	dimensionless	CO ₂ fraction of incoming stream	
H ₂ S input composition	5.00E-03		dimensionless	H₂S fraction of incoming stream		
NGL input composition	1.50E-01		dimensionless	NG liquids (NGL) fraction of incoming stream		
CO ₂ pipeline composition	4.70E-03		4.70E-03 dir		CO₂ fraction of pipeline NG, used to calculate amount of CO₂ removed during processing	
H₂S removal rate	9.80E-01		dimensionless	Removal rate of H₂S		

- Solvent makeup and NG fuel rates based on variability shown by data sources (FLUOR, 2003; NETL, 2010; NETL, 2011)
- CO₂ composition in incoming gas (i.e., "production gas") based on characteristics of NG wells that capture CO₂ for use in EOR in the Permian Basin
- CO₂ removal rate is a dependent variable, calculated based production gas composition (variable) and pipeline gas composition (0.47% mass CO₂) (NETL, 2012)

Unit Process for CO₂ from Ammonia Production

- NG is feedstock and fuel (coal is a negligible share of ammonia feedstock in the U.S.)
- Ammonia production is a two-step process
 - Step 1: Steam reforming of NG to produce carbon monoxide (CO) and hydrogen (H₂)
 - Step 2: Catalyzed conversion of hydrogen and nitrogen to ammonia
- Instead of being used for urea production, CO₂ is sent to carbon capture, utilization and storage (CCUS)
- Key data sources
 - Energy and feedstock profiles by government-sponsored research (Energetics, 2000; USDA, 2007; Worrell et al., 2000)
 - EPA emission factors for ammonia plants (EPA, 2009)
 - Water use data from European fertilizer industry (EFMA, 2000)

Key Parameters for CO₂ from Ammonia Production

Parameter Name	Low	Expected	High	Units	Description
NG input	7.78E-01	9.30E-01	1.08E+00	kg/kg CO₂ captured	NG input (feedstock and fuel) per unit of CO₂ captured
Water input	1.10	1.72	2.35	kg/kg CO₂ captured	Water input per unit of CO₂ captured
Fuel fraction	3.79E-01	4.21E-01	4.64E-01	dimensionless	Fraction of NG input used for fuel instead of feedstock

Total NG input is variable

- Reformer efficiency affects amount of NG required for synthesis gas production
- Intermediate reactions that shift CO to CO₂ also affect amount of NG feedstock
- Extent of heat exchange between ammonia and urea production affects amount of NG required for fuel

Water input is also variable

- Majority of water input is consumed for steam generation
- Steam requirements depend on reformer efficiency
- CO₂ production rate is also variable, but is accounted for in the NG and water input parameters
- Data limitations prevent parameterization of flows within ammonia plant

Co-Product Management

- Natural CO₂ dome produces only CO₂ (no co-products)
- NG processing produces CO₂, NG, and NGL
 - CO₂ cannot be expressed in terms of energy, so energy-based co-product allocation is *not* feasible
 - Mass-based co-product allocation is feasible and is based on masses of produced
 CO₂ and NG
 - System expansion is also feasible, but requires consequential assumptions

Ammonia plant produces CO₂ and ammonia

- CO₂ cannot be expressed in terms of energy, so energy-based co-product allocation is *not* feasible
- Mass-based co-product allocation is feasible and is based on masses of produced CO₂ and ammonia
- System expansion is also feasible, but requires consequential assumptions

Coal and NG power plants produce CO₂ and electricity

- CO₂ cannot be expressed in terms of energy, so energy-based co-product allocation is *not* feasible; nor can electricity be expressed in terms of mass
- System expansion is the only option

Cradle-to-Gate Results for CO₂ from Natural Dome

Cradle-to-Gate Results for CO₂ from NG Processing (Mass Allocation)

Cradle-to-Gate Results for CO₂ from Ammonia Production (Mass Allocation)

Cradle-to-Gate Results for CO₂ from SCPC Power Plant (Displacement)

Cradle-to-Gate Results for CO₂ from NGCC Power Plant (Displacement)

GHG Sensitivity and Uncertainty for CO₂ from a

- GHG results are sensitive to changes in dehydrator variables (power use and CO₂ loss rate)
- GHG results show an inverse relationship to well production rate, well success rate, and well life –
 these parameters affect denominator used for apportioning construction and land use burdens
- Greatest uncertainty in GHG results is caused by uncertainty in CO₂ processing (dehydration)

GHG Sensitivity and Uncertainty for CO₂ from NG Processing

 GHG emissions sensitive to changes in CO₂ composition of incoming gas and steam rates for gas processing

GHG Sensitivity and Uncertainty for CO₂ from Ammonia Production

- Due to the high GHG footprint of NG extraction, GHG emission sensitivity and uncertainty driven by NG input rate
- Data limitations prevent parameterization of other ammonia plant operating characteristics

GHG Uncertainty for CO₂ from SCPC and NGCC Power Plants

- For both technologies, majority of uncertainty in GHG emissions is driven by the displacement of electricity expected value is based on displacement of 2010 U.S. mix; low displacement of EIA AEO 2035 mix; high displacement of fleet coal
- Additional uncertainty from the extraction of Illinois No. 6 coal mine methane releases for SCPC
- Additional uncertainty from the supply chain of NG for the power plant (driven by venting and flaring of methane) for NGCC

Carbon Footprint of CO₂ Summary

- Captured power values yield negative results because of the displacement of the co-product (electricity) with a more GHGintensive conventional source (U.S. grid mix)
- Natural Dome has effectively zero environmental burden – the resource is extracted directly, no conversion processes necessary'
- Alternative sources for captured CO₂ (NG processing and Ammonia production) are less GHG-efficient methods because of the processing emissions

Recommendations and Conclusions

- Above results are only from cradle to gate, so they should be used with care
- These models allow further LCA modeling of carbon capture, utilization, and storage (CCUS) scenarios
- A detailed report on these models is currently under review and will be released soon on the NETL Energy Analysis site
- For more information on EOR, consider attending these NETL presentations in the "Fossil Fuels 2" session from 3:00-4:30 in Ligurian II:
 - A Parameterized Life Cycle Model of Crude from CO₂-Enhanced Oil Recovery
 - The Challenge of Co-product Accounting for Large-scale Energy Systems: Power, Fuel and CO₂

Contact Information

NETL

www.netl.doe.gov

Office of Fossil Energy

www.fe.doe.gov

Timothy J. Skone, P.E. Robert James, Ph.D.

Senior Environmental Engineer Office of Strategic Energy Analysis and Planning (412) 386-4495 timothy.skone@netl.doe.gov General Engineer
Office of Strategic Energy
Analysis and Planning
(304) 285-4309
robert.james @netl.doe.gov

Joe Marriott, Ph.D.

Lead Associate
Booz Allen Hamilton
(412) 386-7557
joseph.marriott@contr.netl.doe.gov

James Littlefield

Associate
Booz Allen Hamilton
(412) 386-7560
james.littlefield@contr.netl.doe.gov

References

- EFMA. (2000). Best Available Techniques for Pollution and Control in the European Fertilizer Industry: Production of Ammonia. Brussels, Belgium.
- EIA. (2006) Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market. U.S. Energy Information Administration. Office of Oil and Gas. Washington, D.C.
- Energetics. (2000). Energy and Environmental Profile of the U.S. Chemical Industry. U.S. Department of Energy, Office of Industrial Technologies. Accessed on December 27, 2012 at http://www1.eere.energy.gov/manufacturing/resources/chemicals/pdfs/profile_chap1.pdf
- EPA. (2009) Technical Support Document for the Ammonia Production Sector Proposed Rule for Mandatory Reporting of Greenhouse Gases. U.S. Environmental Protection Agency. Office of Air and Radiation. Washington, D.C.
- FLUOR. (2003) FLOUR's Econamine FG Plus Technology: An Enhanced Amine-Based CO₂ Capture Process, FLUOR Corporation. Accessed on July 30, 2012 at http://www.fluor.com/SiteCollectionDocuments/FluorEconamineFGPlusTechnology-NETLConf_May2003.pdf.
- MIT. (2011). Lebarge Fact Sheet: Carbon Dioxide Capture and Storage Project. Massachusetts Institute of Technology. Retrieved December 11, 2012, from http://sequestration.mit.edu/tools/projects/la_barge.html
- NETL. (2010) Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, National Energy Technology Laboratory, Pittsburgh, PA. Accessed on July 30, 2012 at http://www.netl.doe.gov/energy-analyses/pubs/BitBase FinRep Rev2.pdf.
- NETL. (2011) DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Technology Update, National Energy Technology Laboratory, Pittsburgh, PA. Accessed on July 30, 2012 at http://www.netl.doe.gov/technologies/coalpower/ewr/pubs/CO2Handbook/CO2-Capture-Tech-Update-2011 Front-End%20Report.pdf.
- NETL. (2012). Role of Alternative Energy Sources: Natural Gas Technology Assessment. (DOE/NETL-2012/1539). Pittsburgh, PA: National Energy Technology Laboratory. Retrieved November 8, 2012, from http://www.netl.doe.gov/energy-analyses/pubs/NGTechAssess.pdf
- USDA. (2007). Impact of Rising Natural Gas Prices on U.S. Ammonia Supply. Retrieved November 21, 2012, from http://www.ers.usda.gov/media/198815/wrs0702 1 .pdf
- Worrell, E., Phylipsen, D., DanEinstein, & Martin, N. (2000). Energy Use and Energy Intensity of the U.S. Chemical Industry: Ernest Orlando Lawrence Berkeley National Laboratory.

